ES查询-match VS match_phrase

by:leotse

match VS match_phrase

我们以一个查询的示例开始,我们在student这个type中存储了一些学生的基本信息,我们分别使用match和match_phrase进行查询。
首先,使用match进行检索,关键字是“He is”:

1
2
3
4
5
6
7
8
GET /test/student/_search
{
"query": {
"match": {
"description": "He is"
}
}
}

执行这条查询,得到的结果如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
{
"took": 3,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
}
,

"hits": {
"total": 4,
"max_score": 0.2169777,
"hits": [
{
"_index": "test",
"_type": "student",
"_id": "2",
"_score": 0.2169777,
"_source": {
"name": "februus",
"sex": "male",
"age": 24,
"description": "He is passionate.",
"interests": "reading, programing"
}

},

{
"_index": "test",
"_type": "student",
"_id": "1",
"_score": 0.16273327,
"_source": {
"name": "leotse",
"sex": "male",
"age": 25,
"description": "He is a big data engineer.",
"interests": "reading, swiming, hiking"
}

},

{
"_index": "test",
"_type": "student",
"_id": "4",
"_score": 0.01989093,
"_source": {
"name": "pascal",
"sex": "male",
"age": 25,
"description": "He works very hard because he wanna go to Canada.",
"interests": "programing, reading"
}

},

{
"_index": "test",
"_type": "student",
"_id": "3",
"_score": 0.016878016,
"_source": {
"name": "yolovon",
"sex": "female",
"age": 24,
"description": "She is so charming and beautiful.",
"interests": "reading, shopping"
}

}

]
}

}

而当你执行match_phrase时:

1
2
3
4
5
6
7
8
GET /test/student/_search
{
"query": {
"match_phrase": {
"description": "He is"
}
}
}

结果如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
{
"took": 3,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
}
,

"hits": {
"total": 2,
"max_score": 0.30685282,
"hits": [
{
"_index": "test",
"_type": "student",
"_id": "2",
"_score": 0.30685282,
"_source": {
"name": "februus",
"sex": "male",
"age": 24,
"description": "He is passionate.",
"interests": "reading, programing"
}

},

{
"_index": "test",
"_type": "student",
"_id": "1",
"_score": 0.23013961,
"_source": {
"name": "leotse",
"sex": "male",
"age": 25,
"description": "He is a big data engineer.",
"interests": "reading, swiming, hiking"
}

}

]
}

}

占的篇幅有点长,但是如果能基于此看清这两者之间的区别,那也是值得的。

我们分析一下这两者结果的差别:

1.非常直观的一点,对于同一个数据集,两者检索出来的结果集数量不一样;
2.对于match的结果,我们可以可以看到,结果的Document中description这个field可以包含“He is”,“He”或者“is”;
3.match_phrased的结果中的description字段,必须包含“He is”这一个词组;
4.所有的检索结果都有一个_score字段,看起来是当前这个document在当前搜索条件下的评分,而检索结果也是按照这个得分从高到低进行排序。

我们要想弄清楚match和match_phrase的区别,要先回到他们的用途:match是全文搜索,也就是说这里的搜索条件是针对这个字段的全文,只要发现和搜索条件相关的Document,都会出现在最终的结果集中,事实上,ES会根据结果相关性评分来对结果集进行排序,这个相关性评分也就是我们看到的_score字段;总体上看,description中出现了“He is”的Document的相关性评分高于只出现“He”或“is”的Document。(至于怎么给每一个Document评分,我们会在以后介绍)。

相关性(relevance)的概念在Elasticsearch中非常重要,而这个概念在传统关系型数据库中是不可想象的,因为传统数据库对记录的查询只有匹配或者不匹配。

那么,如果我们不想将我们的查询条件拆分,应该怎么办呢?这时候我们就可以使用match_phrase:
match_phrase是短语搜索,亦即它会将给定的短语(phrase)当成一个完整的查询条件。当使用match_phrase进行搜索的时候,你的结果集中,所有的Document都必须包含你指定的查询词组,在这里是“He is”。这看起来有点像关系型数据库的like查询操作。

相关性评分的相关知识

相信到这里,我们都能比较清楚的理解这两者的区别。但是我们还有一个问题没有弄清楚,那就是_score到底是怎么得出的?为什么同样包含了“He is”这个phrase,_id为2的Document得分为0.30685282,而_id为1的Document的得分为0.23013961?

查询语句会为每个Document计算一个相关性评分_score,评分的计算方式取决于不同的查询类型。ES的相似度算法为TF/IDF(检索词频率/反向文档频率)。我们在这里顺带介绍一下TF/IDF的几个相关概念:

1.字段长度准则:这个准则很简单,字段内容的长度越长,相关性越低。我们在上面的两个例子中都能看到,同样包含了“He is”这个关键字,但是”He is passionate.”的相关性评分高于”He is a big data engineer.”,这就是因为字段长度准则影响了它们的相关性评分;

2.检索词频率准则:检索关键字出现频率越高,相关性也越高。这个例子中没有比较明显的体现出来,你可以自己试验一下;

3.反向Document频率准则:每个检索关键字在Index中出现的频率越高,相关性越低。

一般的,我们理解了以上三个准则,就能了解ES的相关性评分的基本守则。以下是一些相关性评分的Tips:

单个查询可以使用TF/IDF评分标准或其他方式。
如果多条查询子句被合并为一条复合查询语句,那么每个查询子句计算得出的评分会被合并到总的相关性评分中。

因为“相关性评分”这个概念和这篇博文的“相关性评分”并不高,因此在此就不展开讨论,只是点到为止,如果想要了解更多有关ES相关性评分的内容,可以自行Google,也可以继续关注我的博客,以后会专门探讨这一块内容。